Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Neurol Clin Pract ; 13(4): e200166, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-20237902

ABSTRACT

Background and Objectives: The global spread of the COVID-19 pandemic accelerated the vaccine development time line, regulatory approval, and widespread implementation in the population underscoring the importance of postauthorization/postlicensure vaccine safety surveillance. To monitor for vaccine-related adverse events, we prospectively identified patients hospitalized for prespecified neurologic conditions who received mRNA or adenovirus COVID-19 vaccines and assessed cases for potential risk factors and alternative etiologies of the adverse event. Methods: We identified prespecified neurologic conditions in hospitalized individuals within 6 weeks of receipt of a dose of any COVID-19 vaccination between December 11, 2020, and June 22, 2021 (Columbia University Irving Medical Center/New York Presbyterian Hospital, New York City, New York). Clinical data from electronic medical records in these vaccinated patients were reviewed for assessment of contributing risk factors and etiologies for these neurologic conditions by use of a published algorithm. Results: Among 3,830 individuals screened for COVID-19 vaccination status and neurologic conditions, 138 (3.6%) cases were included in this study (126 after mRNA and 6 after Janssen vaccines). The 4 most prevalent neurologic syndromes included ischemic stroke (52, 37.7%), encephalopathy (45, 32.6%), seizure (22, 15.9%), and intracranial hemorrhage (ICH) (13, 9.4%). All 138 cases (100%) had 1 or more risk factors and/or evidence for established causes. Metabolic derangement was the most common etiology for seizures (24, 53.3%) and encephalopathy (5, 22.7%) while hypertension was the most significant risk factor in ischemic stroke (45, 86.5%) and ICH cases (4, 30.8%). Discussion: All cases in this study were determined to have at least 1 risk factor and/or known etiology accounting for their neurologic syndromes. Our comprehensive clinical review of these cases supports the safety of mRNA COVID-19 vaccines.

2.
Curr Opin Neurol ; 36(3): 229-237, 2023 06 01.
Article in English | MEDLINE | ID: covidwho-2297840

ABSTRACT

PURPOSE OF REVIEW: Recent outbreaks of poliomyelitis in countries that have been free of cases for decades highlight the challenges of eradicating polio in a globalized interconnected world beset with a novel viral pandemic. We provide an epidemiological update, advancements in vaccines, and amendments in public health strategy of poliomyelitis in this review. RECENT FINDINGS: Last year, new cases of wild poliovirus type 1 (WPV1) were documented in regions previously documented to have eradicated WPV1 and reports of circulating vaccine-derived poliovirus type 2 (cVDPV2) and 3 (cVDPV3) in New York and Jerusalem made international headlines. Sequencing of wastewater samples from environmental surveillance revealed that the WPV1 strains were related to WPV1 lineages from endemic countries and the cVDPV2 strains from New York and Jerusalem were not only related to each other but also to environmental isolates found in London. The evidence of importation of WPV1 cases from endemic countries, and global transmission of cVDPVs justifies renewed efforts in routine vaccination programs and outbreak control measures that were interrupted by the COVID-19 pandemic. After the novel oral poliovirus vaccine type 2 (nOPV2) received emergency authorization for containment of cVDPV2 outbreaks in 2021, subsequent reduced incidence, transmission rates, and vaccine adverse events, alongside increased genetic stability of viral isolates substantiates the safety and efficacy of nOPV2. The nOPV1 and nOPV3 vaccines, against type 1 and 3 cVDPVs, and measures to increase accessibility and efficacy of inactivated poliovirus vaccine (IPV) are in development. SUMMARY: A revised strategy utilizing more genetically stable vaccine formulations, with uninterrupted vaccination programs and continued active surveillance optimizes the prospect of global poliomyelitis eradication.


Subject(s)
COVID-19 , Poliomyelitis , Poliovirus , Humans , Poliovirus/genetics , Pandemics , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/complications , Poliovirus Vaccine, Oral/adverse effects , Poliomyelitis/epidemiology , Poliomyelitis/prevention & control , Poliomyelitis/etiology , Disease Outbreaks
3.
Neurol Clin Pract ; 12(4): e66-e74, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-2089290

ABSTRACT

Background and Objectives: There have been numerous reports of neurologic manifestations identified in hospitalized patients infected with SARS-CoV-2, the virus that causes COVID-19. Here, we identify the spectrum of associated neurologic symptoms and diagnoses, define the time course of their development, and examine readmission rates and mortality risk posthospitalization in a multiethnic urban cohort. Methods: We identify the occurrence of new neurologic diagnoses among patients with laboratory-confirmed SARS-CoV-2 infection in New York City. A retrospective cohort study was performed on 532 cases (hospitalized patients with new neurologic diagnoses within 6 weeks of positive SARS-CoV-2 laboratory results between March 1, 2020, and August 31, 2020). We compare demographic and clinical features of the 532 cases with 532 controls (hospitalized COVID-19 patients without neurologic diagnoses) in a case-control study with one-to-one matching and examine hospital-related data and outcomes of death and readmission up to 6 months after acute hospitalization in a secondary case-only analysis. Results: Among the 532 cases, the most common new neurologic diagnoses included encephalopathy (478, 89.8%), stroke (66, 12.4%), and seizures (38, 7.1%). In the case-control study, cases were more likely than controls to be male (58.6% vs 52.8%, p = 0.05), had baseline neurologic comorbidities (36.3% vs 13.0%, p < 0.0001), and were to be treated in an intensive care unit (62.0% vs 9.6%, p < 0.0001). Of the 394 (74.1%) cases who survived acute hospitalization, more than half (220 of 394, 55.8%) were readmitted within 6 months, with a mortality rate of 23.2% during readmission. Discussion: Hospitalized patients with SARS-CoV-2 and new neurologic diagnoses have significant morbidity and mortality postdischarge. Further research is needed to define the effect of neurologic diagnoses during acute hospitalization on longitudinal post-COVID-19-related symptoms including neurocognitive impairment.

4.
J Neurol Sci ; 427: 117532, 2021 08 15.
Article in English | MEDLINE | ID: covidwho-1253235

ABSTRACT

BACKGROUND: Vaccine induced immune mediated thrombocytopenia or VITT, is a recent and rare phenomenon of thrombosis with thrombocytopenia, frequently including cerebral venous thromboses (CVT), that has been described following vaccination with adenovirus vaccines ChAdOx1 nCOV-19 (AstraZeneca) and Ad26.COV2·S Johnson and Johnson (Janssen/J&J). The evaluation and management of suspected cases of CVT post COVID-19 vaccination are critical skills for a broad range of healthcare providers. METHODS: A collaborative comprehensive review of literature was conducted among a global group of expert neurologists and hematologists. FINDINGS: Strategies for rapid evaluation and treatment of the CVT in the context of possible VITT exist, including inflammatory marker measurements, PF4 assays, and non-heparin anticoagulation.


Subject(s)
COVID-19 , Venous Thrombosis , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Humans , SARS-CoV-2 , Vaccination/adverse effects , Venous Thrombosis/therapy
5.
Brain ; 144(9): 2696-2708, 2021 10 22.
Article in English | MEDLINE | ID: covidwho-1185655

ABSTRACT

Many patients with SARS-CoV-2 infection develop neurological signs and symptoms; although, to date, little evidence exists that primary infection of the brain is a significant contributing factor. We present the clinical, neuropathological and molecular findings of 41 consecutive patients with SARS-CoV-2 infections who died and underwent autopsy in our medical centre. The mean age was 74 years (38-97 years), 27 patients (66%) were male and 34 (83%) were of Hispanic/Latinx ethnicity. Twenty-four patients (59%) were admitted to the intensive care unit. Hospital-associated complications were common, including eight patients (20%) with deep vein thrombosis/pulmonary embolism, seven (17%) with acute kidney injury requiring dialysis and 10 (24%) with positive blood cultures during admission. Eight (20%) patients died within 24 h of hospital admission, while 11 (27%) died more than 4 weeks after hospital admission. Neuropathological examination of 20-30 areas from each brain revealed hypoxic/ischaemic changes in all brains, both global and focal; large and small infarcts, many of which appeared haemorrhagic; and microglial activation with microglial nodules accompanied by neuronophagia, most prominently in the brainstem. We observed sparse T lymphocyte accumulation in either perivascular regions or in the brain parenchyma. Many brains contained atherosclerosis of large arteries and arteriolosclerosis, although none showed evidence of vasculitis. Eighteen patients (44%) exhibited pathologies of neurodegenerative diseases, which was not unexpected given the age range of our patients. We examined multiple fresh frozen and fixed tissues from 28 brains for the presence of viral RNA and protein, using quantitative reverse-transcriptase PCR, RNAscope® and immunocytochemistry with primers, probes and antibodies directed against the spike and nucleocapsid regions. The PCR analysis revealed low to very low, but detectable, viral RNA levels in the majority of brains, although they were far lower than those in the nasal epithelia. RNAscope® and immunocytochemistry failed to detect viral RNA or protein in brains. Our findings indicate that the levels of detectable virus in coronavirus disease 2019 brains are very low and do not correlate with the histopathological alterations. These findings suggest that microglial activation, microglial nodules and neuronophagia, observed in the majority of brains, do not result from direct viral infection of brain parenchyma, but more likely from systemic inflammation, perhaps with synergistic contribution from hypoxia/ischaemia. Further studies are needed to define whether these pathologies, if present in patients who survive coronavirus disease 2019, might contribute to chronic neurological problems.


Subject(s)
Brain Infarction/pathology , Brain/pathology , COVID-19/pathology , Hypoxia-Ischemia, Brain/pathology , Intracranial Hemorrhages/pathology , Acute Kidney Injury/complications , Acute Kidney Injury/physiopathology , Acute Kidney Injury/therapy , Adult , Aged , Aged, 80 and over , Bacteremia/complications , Brain/metabolism , Brain Infarction/complications , COVID-19/complications , COVID-19/physiopathology , Coronavirus Nucleocapsid Proteins/metabolism , Female , Humans , Hypoxia-Ischemia, Brain/complications , Inflammation , Intensive Care Units , Intracranial Hemorrhages/complications , Male , Microglia/pathology , Middle Aged , Neurons/pathology , Phagocytosis , Phosphoproteins/metabolism , Pulmonary Embolism/complications , Pulmonary Embolism/physiopathology , RNA, Viral/metabolism , Renal Dialysis , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Survival Rate , T-Lymphocytes/pathology , Venous Thrombosis/complications , Venous Thrombosis/physiopathology
6.
Cell Rep ; 35(5): 109055, 2021 05 04.
Article in English | MEDLINE | ID: covidwho-1179291

ABSTRACT

Coronavirus disease 2019 (COVID-19) is the latest respiratory pandemic caused by severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2). Although infection initiates in the proximal airways, severe and sometimes fatal symptoms of the disease are caused by infection of the alveolar type 2 (AT2) cells of the distal lung and associated inflammation. In this study, we develop primary human lung epithelial infection models to understand initial responses of proximal and distal lung epithelium to SARS-CoV-2 infection. Differentiated air-liquid interface (ALI) cultures of proximal airway epithelium and alveosphere cultures of distal lung AT2 cells are readily infected by SARS-CoV-2, leading to an epithelial cell-autonomous proinflammatory response with increased expression of interferon signaling genes. Studies to validate the efficacy of selected candidate COVID-19 drugs confirm that remdesivir strongly suppresses viral infection/replication. We provide a relevant platform for study of COVID-19 pathobiology and for rapid drug screening against SARS-CoV-2 and emergent respiratory pathogens.


Subject(s)
Alveolar Epithelial Cells/virology , COVID-19 Drug Treatment , COVID-19/pathology , Lung/virology , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Adult , Aged , Alanine/analogs & derivatives , Alanine/pharmacology , Alveolar Epithelial Cells/metabolism , COVID-19/metabolism , COVID-19/virology , Child, Preschool , Drug Discovery/methods , Epithelial Cells/virology , Epithelium/metabolism , Epithelium/virology , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Lung/pathology , Male , Middle Aged , Models, Biological , Primary Cell Culture , Respiratory Mucosa/virology , SARS-CoV-2/physiology , Virus Replication/drug effects
7.
Cell ; 184(8): 1990-2019, 2021 04 15.
Article in English | MEDLINE | ID: covidwho-1163481

ABSTRACT

The population is aging at a rate never seen before in human history. As the number of elderly adults grows, it is imperative we expand our understanding of the underpinnings of aging biology. Human lungs are composed of a unique panoply of cell types that face ongoing chemical, mechanical, biological, immunological, and xenobiotic stress over a lifetime. Yet, we do not fully appreciate the mechanistic drivers of lung aging and why age increases the risk of parenchymal lung disease, fatal respiratory infection, and primary lung cancer. Here, we review the molecular and cellular aspects of lung aging, local stress response pathways, and how the aging process predisposes to the pathogenesis of pulmonary disease. We place these insights into context of the COVID-19 pandemic and discuss how innate and adaptive immunity within the lung is altered with age.


Subject(s)
Aging , Cellular Senescence , Lung Diseases , Lung , Adaptive Immunity , Aged , Aging/immunology , Aging/pathology , COVID-19/immunology , COVID-19/pathology , Humans , Lung/immunology , Lung/pathology , Lung Diseases/immunology , Lung Diseases/pathology , Oxidative Stress
8.
Open Forum Infect Dis ; 7(11): ofaa501, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-940841

ABSTRACT

BACKGROUND: Assessment of the impact of cerebrospinal fluid (CSF) analysis including investigation for the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential for the optimization of patient care. METHODS: In this case series, we review patients diagnosed with SARS-CoV-2 undergoing lumbar puncture (LP) admitted to Columbia University Irving Medical Center (New York, NY, USA) from March 1 to May 26, 2020. In a subset of patients, CSF SARS-CoV-2 quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) testing is performed. RESULTS: The average age of 27 patients who underwent LP with definitive SARS-CoV-2 (SD) was 37.5 (28.7) years. CSF profiles showed elevated white blood cell counts and protein in 44% and 52% of patients, respectively. LP results impacted treatment decisions in 10 (37%) patients, either by change of antibiotics, influence in disposition decision, or by providing an alternative diagnosis. CSF SARS-CoV-2 qRT-PCR was performed on 8 (30%) patients, with negative results in all samples. CONCLUSIONS: Among patients diagnosed with SARS-CoV-2, CSF results changed treatment decisions or disposition in over one-third of our patient cohort. CSF was frequently abnormal, though CSF SARS-CoV-2 qRT-PCR was negative in all samples. Further studies are required to define whether CSF SARS-CoV-2 testing is warranted in certain clinical contexts.

SELECTION OF CITATIONS
SEARCH DETAIL